In the News: Setting the Spaceplane Stage, August 23, 2017 – Fly frequently, travel safely, land on (most) runways, and operate economically: such are the guiding principles for 21st century spaceplanes, cargo-carrying aerospace workhorses routinely launching to low-Earth orbit for space station resupply and crew transfers. Fans disconsolate after retirement of NASA’s shuttle fleet can take heart: The next generation in reusable space vehicles is set to debut.

A new spaceplane stage has been set by decades of NASA work done at Langley Research Center on horizontal-landing, or HL, lifting bodies. Sporting a design reminiscent of the upward-flexing pectoral fins on breaching manta rays, HL vehicles feature rudimentary wings. As the craft settles through Earth’s atmosphere from orbit the chubby, cigar-like fuselage generates lift from more air pressure on the bottom than on the top...


...A New Kid Spurred by the Soviet Union’s development of its subscale, unmanned BOR-4 – a testbed for the country’s would-be Buran space shuttle – by the 1980s Langley had set to work on a HL-10 successor, known as the HL-20, or “Personal Launch System (PSL).” The effort’s goals were straightforward: to assess the feasibility of low operational costs, make improvements to flight safety, and evaluate the possibility of conventional-runway landings. Yoked to the PSL research was wind tunnel testing and human-performed landing scenarios created in Langley simulators.

By 1990s, a 29-foot full-size, non-flying HL-20 model was built by the students and faculty of North Carolina State University and North Carolina A & T University to study crew-seating arrangements, habitability, equipment layout and how best to enter and exit. Although never flight-tested, the PSL did ultimately deliver: its design would be the basis for development of Sierra Nevada’s Corporation’s (SNC) Dream Chaser.